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Long-read sequencing (LRS) promises to improve the char-
acterization of structural variants (SVs). We generated LRS 
data from 3,622 Icelanders and identified a median of 22,636 
SVs per individual (a median of 13,353 insertions and 9,474 
deletions). We discovered a set of 133,886 reliably geno-
typed SV alleles and imputed them into 166,281 individuals 
to explore their effects on diseases and other traits. We dis-
covered an association of a rare deletion in PCSK9 with lower 
low-density lipoprotein (LDL) cholesterol levels, compared to 
the population average. We also discovered an association of 
a multiallelic SV in ACAN with height; we found 11 alleles that 
differed in the number of a 57-bp-motif repeat and observed 
a linear relationship between the number of repeats carried 
and height. These results show that SVs can be accurately 
characterized at the population scale using LRS data in a 
genome-wide non-targeted approach and demonstrate how 
SVs impact phenotypes.

Human sequence diversity is partially due to SVs1: genomic 
rearrangements affecting at least 50 bp of sequence in the form of 
insertions, deletions, inversions or translocations. The number of 
SVs carried by each individual is less than the number of SNPs and 
short (<50 bp) insertions and deletions (indels), but their greater 
size makes them more likely to have a functional role2, as evident by 
their disproportionately large impact on diseases and other traits2,3.

Extensive characterization of three parent–offspring trios 
sequenced using several technologies4 and an annotated set based 
on one sample (HG002)5 indicate that humans carry 23,000–31,000 
SVs per individual. Most studies using whole-genome sequence 
data are based on short-read sequencing (SRS), for which reads are 

typically 100–200 bp in length, allowing SNPs and small indels to 
be reliably identified6,7. However, short reads make the discovery, 
genotyping and characterization of SVs difficult8, and the number 
of SVs found per individual has been limited to 2,000–11,000 in 
large-scale studies using SRS3,9–11. LRS, with read lengths of several 
kilobases, allows SVs to be detected with greater accuracy. The 
typical process for identifying SVs involves mapping and compar-
ing sequence reads to a reference genome. Due to their greater 
length, LRS reads can be mapped more accurately than SRS reads8. 
LRS reads are also more likely to cover entire SVs, enabling better 
determination of their breakpoints and length. However, LRS reads 
have a relatively high sequencing error rate (often more than 10%) 
that varies depending on sample quality, sequencing technology 
and protocol8. High error rates can result in artifacts8,12, as well as 
failure in SV identification. Artifacts can be especially challenging 
in large-scale studies, in which accumulating false positives (FPs) 
may dominate results and hinder downstream analysis, such as 
genome-wide associations. Although there are studies on detecting 
and characterizing SVs in human genomes using long reads8,13–16 on 
select small datasets, analysis at scale has not been reported.

We present a study applying LRS at a population scale, focused on 
identifying a set of reliable SVs consistently called across individuals 
that can be used for downstream analysis in the context of diseases 
and other traits. We sequenced 3,622 Icelanders by using Oxford 
Nanopore Technologies (ONT), including 441 parent–offspring 
trios, recruited for various studies at deCODE genetics17. DNA was 
isolated from whole blood (n = 3,524) and heart tissue (n = 102) and 
sequenced with ONT PromethION instruments (Methods). SRS 
and DNA-chip data were also available for all of these individuals18. 
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We introduced a number of tools and approaches to facilitate SV 
analysis using long reads characterized by a high error rate at scale, 
including SV filters and heuristics for merging SVs. Finally, to illus-
trate the power of population-based LRS, we developed a tool to 
perform joint genotyping on LRS data.

We basecalled raw sequence data from 4,757 flow cells, in which 
half of all sequenced basepairs (N50) belonged to reads longer than 
19,940 bp (Supplementary Data 1 and Extended Data Fig. 1a). We 
mapped19 all reads to the human reference genome GRCh38 (ref. 20) 
and observed a median LRS aligned coverage of 17.2× (range, 10.0–
94.3×; ‘Sequencing statistics’ in the Supplementary Information 
and Extended Data Fig. 1b) per individual. A median of 87.6% of 
basepairs aligned to the reference (Extended Data Fig. 1c), and the 
median sequencing error rate was 11.6% (3.3% for insertions, 4.5% 
for deletions and 3.8% for mismatches, Extended Data Fig. 1d).

We generated a high-confidence SV set in four stages: (1) dis-
covery, (2) merging across individuals, (3) genotyping and (4) 
imputation (Fig. 1a). We began (Fig. 1b) by discovering SVs with 
high sensitivity8 and refined them at predicted breakpoints using 
SRS data, when possible21 (Methods). Their presence was confirmed 
using the raw-signal-level data22 (Methods and Extended Data Fig. 2)  
to alleviate potential basecalling and alignment errors. We did not 

attempt to discover translocations and inversions. The SVs discov-
ered across individuals were then merged and genotyped using two 
independent datasets: 3,622 and 10,000 Icelanders with LRS and 
SRS data, respectively7,23 (‘Individual selection for short-read geno-
typing’ in the Supplementary Information). Finally, we imputed 
the genotyped variants into the long-range phased haplotypes of a 
total of 166,281 SNP-chip-typed Icelanders18,24,25 and defined a set 
of high-confidence SVs, based on imputation accuracy and other 
filters (Methods).

We identified 133,886 high-confidence SV alleles (75,050 inser-
tions, 55,649 deletions and 3,187 unresolved insertions or deletions, 
Supplementary Data 2, https://github.com/DecodeGenetics/LRS_
SV_sets and Fig. 2a), avoiding double counting of alleles of similar 
length at similar positions (Methods). We observed more insertions 
than deletions4,16,26,27. This contrasts with results based on SRS3,9, 
in which deletions are typically more frequent and easier to iden-
tify. We were able to impute 120,108 SV alleles (67,673 insertions, 
49,845 deletions and 2,590 unresolved insertions or deletions) into 
long-range phased haplotypes from 166,281 chip-typed Icelanders. 
We identified a median of 22,636 SVs per individual (a median 
of 13,353 insertions and 9,474 deletions, ‘Calculating SV counts 
per individual’ in the Supplementary Information and Fig. 2a), of 
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which a median of 20,891 SVs were imputed, spanning a cumula-
tive median length of 10.02 Mb per haploid genome. We estimated 
the false negative (FN) and FP rates of our high-confidence SV 
set by comparing it to public SV datasets. Comparison to an LRS 
SV dataset from Audano et al.16 (n = 15) and an SRS SV dataset, 
gnomAD-SV11 (n = 14,891), using SVs within genome in a bottle 
tier 1 regions of HG002 (ref. 5), suggested FN rates of 2.6% and 
3.4%, respectively, for our dataset (Methods). We estimated an 
FP rate of 8.2% for our dataset by considering our common SVs 

absent from the dataset in Audano et al.16 and their observed ver-
sus expected allele counts in HG002. We also estimated FP rates of 
6.3–7.6% for the gnomAD-SV dataset, which is comparable to the 
rate we estimated for our call set (Methods). These estimates may 
be upwardly biased due to population-specific drift. In an attempt 
to validate 70 of the SVs using PCR, an SV was confirmed for 60 of 
the successful 63 assays (seven assays failed), suggesting an FP rate 
of 4.8% (‘Polymerase Chain Reaction (PCR) verification of SVs’ in 
the Supplementary Information and Supplementary Data 3).
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size were omitted; SV numbers in each category are provided in Supplementary Table 1.
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To measure the relative merits of LRS versus SRS in SV discov-
ery, we assessed whether SV alleles discovered using LRS were also 
found by gnomAD-SV11, which only uses SRS data. Comparing the 
gnomAD-SV dataset to the SV calls made by Audano et al.16 with 
allele frequency greater than 50% suggested a 41.3% FN rate for the 
gnomAD-SV dataset (Methods). Similarly, among our set of 46,352 
imputed SV alleles with frequency greater than 10%, 19,430 (41.9%) 
were not found in the gnomAD-SV dataset. Repeating this analysis 
for subsets of SV alleles within or outside of tandem-repeat (TR) 
regions, we observed FN rates of 47.4% and 27.4%, respectively, for 
the gnomAD-SV dataset. LRS data also improved the genotyping of 
SVs in our data. Of 120,108 imputed SV alleles, 76,857 (64.0%) and 
3,917 (3.2%) SVs were imputed only from LRS and SRS genotyp-
ing, respectively. Furthermore, 74.2% and 38.6% of SV alleles within 
and outside of TR regions, respectively, could not be imputed using 
genotype calls from SRS data. These results show that SV discov-
ery and genotyping at the population scale from LRS data are more 
accurate and reliable than those from SRS11 data. The difference is 
particularly pronounced for SVs in TR regions, which have muta-
tion rates one to four orders of magnitude higher than those for 
other genomic loci28,29.

The number of variants in our SV set rapidly decreased with 
length (Fig. 2b), consistent with previous reports11,14,16. To better 
characterize insertions, we classified them into three groups: tan-
dem duplications (TD), retrotransposable elements (REs) and other 
insertions (INS), corresponding to 30%, 7% and 63% of insertions, 
respectively. We observed three noticeable peaks at sizes around 
300 bp, 2.5 kb and 6 kb, due to REs, corresponding to short inter-
spersed nuclear elements (SINEs), SINE/VNTR/Alu (SVA) and 
long interspersed nuclear elements (LINEs) (Fig. 2b), as expected. 

We found more SVs, particularly TR SVs, near telomeres16 (Fig. 2c), 
a reflection of the sequence content of telomeres and the high muta-
tion rate of TRs16,30. The number of alleles detected decreased with 
increasing allele frequency, with 40.1% of them at a frequency less 
than 1%, which is rare (Fig. 2d and Extended Data Fig. 3). The small 
number of variants that stand out for being fixed or near fixed in 
frequency are most likely examples in which the reference sequence 
carries a derived allele rather than the ancestral state.

In general, frequency reflects the age of variants, such that 
younger variants are rarer than those that are older. As a result, dif-
ferences in the relative allele frequencies of SVs by genomic region 
can provide information about the strength of negative selection that 
has acted against them. We observed both an under-representation 
of SVs and an elevated fraction of rare SVs in coding exons and 
non-coding regulatory regions, such as enhancers and promot-
ers, compared to the genomic average (P < 0.002, in coding exons, 
enhancers and promoters, for both TR and non-TR SVs, bootstrap 
test, Fig. 2e,f). We also found that SVs in TRs tended to be observed 
at higher frequencies than those outside of TRs (particularly when 
compared to those in coding exons), suggesting a higher tolerance 
for SVs in TRs. In regulatory elements, although SVs in TRs were 
more under-represented than SVs outside TRs, they similarly had a 
higher fraction of common alleles than SVs outside TRs. In accor-
dance with the notion that recombination plays a role in SV for-
mation16, we found that SVs were enriched in double-strand break 
regions31 (P < 0.002, bootstrap test) and recombination hotspots32 
(P < 0.002, bootstrap test), particularly in TR alleles within male 
hotspots (P < 0.002, bootstrap test) (Fig. 2e). Interestingly, we 
also observed an elevated rate of rare alleles in recombination  
hotspots (Fig. 2f).
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Variants inside coding exons that are not multiples of three in 
length generally result in translational frameshift and non-functional 
proteins. Among the 549 variants contained within a single cod-
ing exon, we observed a deficit in variant lengths that were not 
multiples of three: 187 (34.1%) compared to the two-thirds (362) 
expected (P = 4.9 × 10−55, two-sided binomial test, Extended Data 
Fig. 4), in line with results using indels25. These results are consistent 
with the hypothesis that SVs that result in translational frameshifts 
are selected against due to their phenotypic impact.

We used two strategies to determine the impact of SVs on phe-
notypes. First, we inferred association of SVs based on linkage 
disequilibrium (LD) with variants previously reported to be asso-
ciated with phenotypes. Of the 116,479 unique variants reported 
in the genome-wide association study (GWAS) catalog, 11,194 
were in strong LD (R2 ≥ 0.8) with 5,238 SV alleles in our data-
set, suggesting possible functional explanations of these associa-
tions (Supplementary Data 4). A subset of 34 high-impact and 54 
moderate-impact SVs, overlapping exons or splice regions, were in 
strong LD with 198 GWAS catalog variants and were therefore plau-
sible causal variants for the reported associations. Among these are 
examples in which the presence of an SV was previously established 
using alternate methods, including a deletion in LCE3B33 associated 
with psoriasis and a deletion in CTRB2 associated with diabetes34,35 
and age-related macular degeneration36. Another example is a rare 
2,460-bp deletion that removes two exons of COL4A3 and is associ-
ated with hematuria37. We also found loci where the occurrence of 
an SV at a GWAS locus has not been reported, including a deletion 
that overlaps the first exon of SLC25A24 and is in strong LD with a 
SNP associated with white blood cell count38 and a 120-bp inframe 
deletion in KAT2B that removes 40 amino acids from the translated 
protein and is in strong LD with a variant associated with systolic 
blood pressure35,39.

Second, we performed direct tests of association with pheno-
types of a cohort of Icelanders (Methods). We found an association 
with a rare 14,154-bp deletion overlapping the first exon of PCSK9 
(Fig. 3a) and LDL cholesterol levels (adjusted effect = −1.31 s.d. and 
P = 7.0 × 10−20, Fig. 3b). LDL cholesterol levels were 0.93 mmol l−1 
lower in carriers (n = 75) than in non-carriers (n = 98,081). We 
observed 13, 56 and 119 heterozygous carriers of the deletion in our 
LRS, SRS and imputation datasets, respectively, corresponding to an 
allele frequency of 0.037%. No homozygous carrier was identified. 
PCSK9 encodes the enzyme proprotein convertase subtilisin–kexin 
type 9 (PCSK9), a key regulator of LDL cholesterol metabolism40 
and a target of cholesterol-lowering drugs41. Loss-of-function vari-
ants in PCSK9 are known to result in lower levels of LDL cholesterol 
and reduced cardiovascular risk42–44, consistent with the association 
observed here. We next tested this deletion for association with 
4,792 plasma proteins measured in 38,405 Icelanders by using 
SOMAscan45. PCSK9 levels in carriers (n = 20) were, on average, 
1.99 s.d. below the population mean (P = 3.1 × 10−13, Fig. 3c). The 
geographical distribution of the carriers in Iceland suggests that the 
variant is more prevalent in western Iceland than in other parts of 
the country (Fig. 3d). Two carriers were found in the gnomAD-SV 
dataset (one of 9,534 Africans and one of 7,624 Europeans), and one 

carrier with low LDL levels was found in a study with Dutch par-
ticipants46, showing that the deletion is not specific to the Icelandic 
population.

The SVs discussed above, although detected using LRS data, 
also could have been detected using SRS data, as they occurred in 
genomic locations where short reads can be reliably mapped. Below, 
we present three examples of common multiallelic SVs within TRs 
that are not found in the gnomAD-SV dataset and are difficult to 
detect from SRS. These include the repeat region of an exon in 
ACAN, a proline-rich repeat region in NACA and the zinc-finger 
(ZnF) domain of PRDM9.

ACAN contains an exonic variable number TR (VNTR), with 
a 57-bp motif (19 amino acids in aggrecan, the translated protein) 
within one of its chondroitin sulfate (CS) attachment sites47, in which 
we identified 11 SV alleles: the reference allele along with deletions 
of one, three, four, five, six, eight and 14 motif(s) and insertions of 
one, two, three and four motif(s). (Fig. 4a,b). We found the five-motif 
(285 bp) deletion to be highly correlated (LD R2 = 0.96) with a syn-
onymous SNP (rs16942341[T]; allele frequency, 3%) reported to 
associate with decreased height (effect = −0.13 s.d., P = 4 × 10−27) 
in a large GWAS analysis of 183,000 individuals of European 
decent48. Both the reported synonymous variant and the SV were 
strongly associated with height in our data (effect = −0.13 s.d., 
P = 1.02 × 10−10; and effect = −0.12 s.d., P = 1.35 × 10−9, respec-
tively). We observed a stronger association and a linear relation-
ship (effect = 0.016 s.d. per motif inserted, P = 6.2 × 10−18, Methods) 
between the number of motifs carried and height (Fig. 4c and Table 
1), suggesting that this SV plays a causal role in the association with 
height. The variance in height explained by the number of motifs 
carried (R2 = 9.9 × 10−4) was also higher than the variation explained 
by the SNP correlated with the five-motif deletion (R2 = 5.7 × 10−4). 
The number of TRs results in a change in the number of CS attach-
ment sites and thereby the number of attached CS chains on the 
aggrecan molecule49,50. Aggrecan is the most abundant proteoglycan 
in cartilage51, and the negatively charged CS chains were shown to 
move water into cartilage52; thus the varying number of CS chains 
can affect the function of this protein. Following the submis-
sion of this manuscript, this association was also observed in the  
UK Biobank53.

NACA contains an exonic VNTR, with a repeat length of 69 bp 
(23 amino acids in NAC-α, the translated protein), repeated 18 
times in GRCh38, in which we identified deletions of one and two 
motifs (69 and 138 bp, respectively, Fig. 4d). The intergenic SNPs 
rs2860482[A] and rs7978685[T] were reported to be associated with 
atrial fibrillation54, and both SNPs were in strong LD (R2 = 0.85) 
with the reference allele of the VNTR. This exon of NACA is tran-
scribed in skNAC, a muscle-specific, alternately spliced transcript, 
the importance of which was demonstrated in the developing heart 
in animal models55. This suggests that the multiallelic SV in NACA 
is the likely explanation of the observed associations with atrial 
fibrillation55,56.

Within the ZnF domain of the recombination hotspot position-
ing gene PRDM9, we identified deletions of one, four and five ZnF(s) 
and insertions of one, two and four ZnF(s), resulting in the removal 

Fig. 4 | Multiallelic SVs in repeat regions within exons of ACAN, NACA and PRDM9, difficult for SV detection using SRS. a,d,e, Ideograms of respective 
chromosomes with cytobands, highlighting the SV site in red. *SRS mean depth of coverage tracks across respective genes were accessed via the gnomAD 
browser. Motif lengths and TR begin and end sites are not to scale. Inserted or deleted motifs are shown with arbitrary begin sites within the TR region. 
a, SV alleles with inserted or deleted 57-bp motifs within an exon of ACAN. The SRS-coverage track shows the absence of reads with a reliable mapping 
across the TR region. b, Allele frequencies of the SV alleles, including the reference allele. c, Effects of SV alleles and the reference allele on height, showing 
a linear relationship (effect = 0.016 s.d. per motif inserted, P = 6.2 × 10−18, two-sided linear regression). Error bars indicate 95% confidence intervals, 
and centers show the average change in height, expressed in s.d. units. SV alleles with frequency less than 0.01% were omitted in a,b due to their large 
confidence interval for effect values. Carrier numbers for each allele are given in Supplementary Table 1. d, SV alleles with deleted 69-bp motifs within 
an exon of NACA. e, SV alleles with inserted or deleted 84-bp ZnF motifs within the last exon of PRDM9. SRS-coverage tracks in a,d,e indicate reduced 
numbers of reliably mapped reads across the TR regions, compared to those of remaining regions of the gene.
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or addition of a number of ZnF motifs from or to the encoded 
protein, methyltransferase PRDM9 (Fig. 4e). The ZnF domain 
of PRDM9 is the DNA-binding domain, and the SV alleles thus  

introduce alterations in the DNA-binding motif of PRDM9 and 
consequently change the locations of meiotic recombination57,58. All 
the different ZnF-motif lengths showed a strong association with 
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the location of crossovers as measured by the fraction of cross-
overs that occur in recombination hotspots (Table 2). These results 
are consistent with previous results, which were indirectly ascer-
tained via SNPs tagging multiple motif counts32, while the current 
results allow us to directly ascertain the effects of each motif count 
individually.

We cataloged genes with rare homozygous loss-of-function SVs, 
as predicted by the Ensembl Variant Effect Predictor59, and found 
181 genes with a rare loss-of-function SV, for which at least one 
homozygous carrier was observed (151 of these were not found in 
the gnomAD-SV set, Supplementary Data 5). A number of these 
were reported to cause diseases under recessive inheritance. One 
example is a 57-kb deletion, overlapping the genes CTNS and SHPK, 
originally associated with cystinosis60, a lysosomal storage disease 
characterized by the abnormal accumulation of the amino acid cys-
tine, in which homozygous carriers of the deletion generally develop 
cystinosis. We identified a single homozygous carrier of this dele-
tion in our imputation set, who was not in our genotyping set and 
was diagnosed with cystinosis. We also observed a 31.7-kb deletion 
(exons 11–17; allele frequency, 0.45%) in GALC, which encodes 
galactosylceramidase. This is the most common mutation causing 
Krabbe disease in Europeans61–63. We identified a single homozygote 
for this deletion, a boy with a diagnosis of Krabbe disease.

In this study, we demonstrate the application of LRS at the pop-
ulation scale and describe how it can be used to accurately iden-
tify SVs and to assess their impact on human disease and other 
traits. We identified over 22,636 SVs per individual, three to five 
times more than those found in SRS data10,11. We show that LRS is 

more sensitive than SRS in detecting SVs across the genome. This 
advantage is most pronounced in repeat regions, such as TRs. We 
report 5,238 SVs in strong LD with variants in the GWAS catalog 
that are associated with a disease or other traits. This constitutes 
an increase of over twofold from the number of SVs using SRS data 
alone11. These results show that LRS can further our understand-
ing of disease mechanisms and the effects of sequence variation on  
human traits.

LRS technology and accompanying data analysis methods are 
still being developed and can be improved upon. Although we 
detected a large number of SVs per individual, we did not attempt 
to discover all forms of SVs. We detected fewer long insertions than 
expected, possibly due to sequencing bias or limitations of the LRS 
analysis algorithms. We also expected an under-representation of 
very rare SV alleles, as it is more difficult to phase and impute alleles 
with few carriers accurately. Although we highlighted SVs that 
overlap coding exons due to their established functional impact, 
other SVs may still affect the individual, for example, those altering 
regulatory regions or changing RNA secondary structure. A better 
understanding of the biochemical causes and consequences of SVs 
will be essential to understand human evolution and disease. These 
will in turn also lead to better analysis methods and increase our 
ability to identify SVs and assess their impact.

SVs have frequently been found using targeted approaches, 
often relying on discovered SNPs or indels in a disease-association 
context. We demonstrate that our method can identify SVs in a 
genome-wide, non-targeted fashion. We show that SVs affecting 
protein function are disproportionately rare. As a result, large-scale 
SV studies will be essential to characterize their role in the genetics 
of disease. This study, based on LRS data from 3,622 Icelanders, lays 
down an important foundation for further large-scale SV studies, 
allowing investigation of their full frequency spectrum, including 
those in genomic regions thus far inaccessible to SRS technologies.
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Methods
Participants. A set of 3,622 individuals (1,656 males and 1,966 females) was selected 
for ONT sequencing, including 441 parent–offspring trios. Individuals were selected 
from a large set of Icelandic samples collected as part of disease-association efforts at 
deCODE genetics. The earliest year of birth (YOB) among both males and females 
was 1900. The latest YOB among males was 2003 and 2014 among females. The 
median YOB was 1955 for males and 1957 for females. The samples constitute a 
database of DNA-sequence variation in the Icelandic population combined with 
extensive phenotypic data, including information on blood levels of lipids for up to 
113,355 genotyped individuals (approval no. VSN-15-023). The study population 
was described in detail previously17,18,64,65. All participants were Icelanders who 
donated biological samples for genotyping and provided informed consent as part 
of various genetic programs at deCODE genetics. The study was approved by the 
National Bioethics Committee of Iceland (approval nos. VSN-15-023 and VSN-05-
097, with amendments). A subset of individuals (n = 102) provided heart samples, 
with approval no. VSN-05-097.

DNA source. Most of the DNA samples sequenced in this study were isolated 
from whole blood (n = 3,524). DNA from whole blood was extracted using the 
Chemagic method (PerkinElmer), an automated procedure that involves the 
use of M-PVA magnetic beads (https://chemagen.com). DNA samples were also 
isolated from heart tissue (n = 102); four individuals provided both heart and 
whole-blood samples. Samples were received and subsequently stored in liquid 
nitrogen. Samples were cut to a smaller size on dry ice if needed. Lysis buffer and 
a sterile 5-mm steel bead were added to each sample before homogenization on a 
TissueLyser LT (Qiagen). DNA was extracted from the homogenized lysates using 
the MasterPure DNA Purification kit (Epicentre) following the manufacturer’s 
protocol but with overnight proteinase K digestion. Isolated DNA samples were 
quantified using a Trinean DropSense, and integrity was assessed using the 
Fragment Analyzer capillary system from AATI.

Sample preparation. Sequencing libraries were generated using the SQK-LSK109 
ligation kit from ONT. Sample input varied from 1 to 5 µg DNA, depending on the 
exact version of the preparation kit and the flow cell type used for PromethION 
sequencing. In total, 1,322 of 4,757 flow cells underwent partial DNA shearing 
using the Covaris g-TUBE to a mean fragment size of 10−15 kb. The remainder 
of the samples were not sheared (Supplementary Fig. 1, from March 2019 and 
onward). Library preparation started with DNA repair and A tailing using the 
NEBNext FFPE repair mix (M6630) and the NEBNext End repair/dA-tailing 
module (E7546), followed by clean up with AMPure XP beads. Adaptor ligation 
was performed using NEB T4 ligase (NEBNext Quick Ligation Module, E6056) 
and the ONT/LSK109 adaptor mix (AMX) and ligation buffer, respectively. 
Samples were again purified using AMPure XP beads, using the Long Fragment 
Buffer for the wash steps. Final sample elutions from the beads were performed 
using 15 µl elution buffer. Samples were quantified using a Qubit fluorimeter and 
diluted appropriately for loading onto the flow cells.

Sequencing. Samples were loaded onto PromethION R9.4.1 flow cells following 
ONT standard operating procedures. Sequencing was performed on PromethION 
devices. Data acquisition varied from 48 to 60 h per flow cell.

Basecalling. Squiggle data from PromethION sequencers were basecalled using 
Guppy (3,622 individuals, 4,757 flow cells). We ran Guppy Sequencing Pipeline 
Software for GPU machines, version 3.2.2 (643 flow cells) and version 3.3.0 (4,114 
flow cells), using the ‘flipflop’ model (configuration file template_r9.4.1._450bps_
large_flipflop.jsn from Guppy version 2.3.1) for PromethION flow cells with 
firmware 2.0.4 and the ‘hac’ model (using the corresponding configuration file 
template_r9.4.1._450bps_hac_prom.jsn) for firmwares 2.0.10, 2.0.12 and 2.0.14 
(Supplementary Fig. 1).

Our oldest flow cells were originally basecalled using Albacore (a now 
deprecated basecaller from ONT). Mid-year 2019, we upgraded to Guppy version 
3.2.2. This was reported in our preliminary study based on 1,817 individuals66. 
In autumn 2019, we upgraded Guppy to version 3.3.0 due to new PromethION 
firmware and re-basecalled all flow cells previously basecalled with Albacore to 
reduce error rates67.

All 3,622 individuals basecalled with Guppy had a minimum 
reference-genome-aligned sequencing coverage of at least 10× at the time of 
analysis for SV discovery.

Read mapping. Basecalled reads were mapped to the human reference 
genome GRCh38 (ref. 20) with minimap2 (ref. 19) (version 2.14-r883), using the 
recommended option for ONT sequence-to-reference mapping (-x map-ont). In 
addition, we used the parameters ‘--MD -Y’. The aligned reads were sorted using 
SAMtools sort68 and stored in a BAM file.

Generating SV candidates from an individual. As shown in Fig. 1b, after 
basecalling the raw reads, we aligned them to the GRCh38 reference genome using 
minimap2 and performed a sensitive SV prediction using Sniffles. We filtered the 
SV candidates using their alternate allele ratios and refined their breakpoints using 

SViper21. Next, we used SquiggleSVFilter on both the breakpoint refined SVs and 
filtered Sniffles SV calls (breakpoint unrefined) to verify their presence using the 
raw-signal-level data. Supplementary Fig. 2 shows the number of discovered SVs 
per individual, sorted by the aligned coverage of the individual.

SV prediction and breakpoint refinement. A set of preliminary variant 
predictions was obtained using Sniffles8 (version 1.0.10) for each genome, in a 
highly sensitive fashion (using -s 3 and --ignore_sd) to minimize FNs due to the 
existence of low-coverage regions. Up to 30 supporting reads were reported per 
variant. Other optional parameters were left as default. Indels with different start 
and end chromosomes and of size larger than 1 Mb were discarded.

Next, deletions and insertions with alternate allele ratios below 0.2 and 
0.05, respectively, were discarded as a pre-filter from raw Sniffles calls. A higher 
value was used for deletions, as the basecaller is deletion biased. We calculated 
the alternate allele ratio as the number of reads supporting the variant divided 
by the coverage at the variant site. SVs were then breakpoint refined with 
SViper21 (https://github.com/DecodeGenetics/SViper/tree/cornercases) using 
SRS data when possible (‘Breakpoint and variant refinement with SViper’ in the 
Supplementary Information).

SV filtering using squiggles (SquiggleSVFilter). We developed SquiggleSVFilter 
(https://github.com/DecodeGenetics/nanopolish/tree/squigglesv) to filter false SV 
predictions using the signal-level raw ONT sequencing data, that is, the squiggle. 
SquiggleSVFilter employs the squiggle-versus-sequence log-likelihood-score 
function provided by Nanopolish22 and compares the log-likelihood scores of 
the predicted alternate allele versus the reference allele on the squiggle around 
both of the SV breakpoints. The likelihood score is essentially the probability 
of the signal-level raw data given a candidate sequence22. Nanopolish uses the 
events, which are the step-wise changes in the measured electrical currents, as the 
signal data in its log-likelihood-score function. Accessing an event interval over 
a predicted SV breakpoint requires a mapping of the read sequence indices to 
reference-genome coordinates (that is, a reference-aligned BAM file) and to event 
indices, called an ‘event table’. To achieve this, we generated basecalls and event 
tables for reads that support a predicted SV, using a modified version of Scrappie 
(https://github.com/DecodeGenetics/scrappie/tree/v1.3.0.events) and mapped 
these reads to the reference genome using minimap2 with parameters as described 
in Read mapping. Using the event table, we found the ‘event slices’ corresponding 
to the read regions spanning the SV breakpoints (‘Accessing event-slices of interest 
in SquiggleSVFilter’ in the Supplementary Information). Finally, we calculated 
the raw signal-versus-sequence log-likelihood scores using the reference and 
alternate allele sequences for both event slices and used their difference to 
support or reject a candidate variant. We supported a variant if at least three reads 
obtained a log-likelihood score difference of at least 1.92 for either of the event 
slices. A sample execution is provided in https://github.com/DecodeGenetics/
SquiggleSV_samplerun.

SV merging. Most SVs are carried by multiple individuals and thus will be 
rediscovered, potentially with slightly different representations across carriers, 
varying in length and location. To eliminate such redundancies, we applied the 
following SV-merging approach, in which we represent SVs as vertices in a graph 
and find cliques representing merged SVs.

	1.	 Preprocessing: we first identified TR SVs and then preclustered them into 
disjoint SV groups to reduce the input sizes for the following step (‘SV merg-
ing preprocessing‘ in the Supplementary Information).

	2.	 Finding SV cliques: we found cliques within each detached SV group gener-
ated in (1), independently for TR SVs and non-TR SVs as defined in (1). We 
used an undirected graph G(V, E), where each vertex v∈V represents an SV, 
and each edge e∈E between vertex vi and vertex vj is drawn if distance d(vi, vj) 
is at most D and assigned d(vi, vj) as the edge length, where distance is

d
(

vi, vj
)

= 1 −











min
(

vei ,v
e
j

)

−max
(

vbi ,v
b
j

)

max(l(vi),l(vj)) if vi and vj overlap,

0 otherwise,

where vi and vj represent two SVs, l(vi) is the length of vi, and vei  and vbi  
represent the ending and beginning sites of vi.

We then formulated the SV merging as a corrupted cliques problem, where, 
given a graph G, the aim is to transform G into a clique graph with the smallest 
number of edge additions and removals, such that a clique represents a single 
merged SV. To solve this, we employed the Cluster Affinity Search Technique 
algorithm69 (https://github.com/DecodeGenetics/sv-merger). We computed the 
average distance of vertex vi to the cluster C as a weighted average, such that

m (vi, C) =

∑

vj∈C d
(

vi, vj
)

× wC
I(vj)

∑

vj∈C wC
I(vj)

where I(vj) is the individual vj is discovered in, and wC
I(vj) is the weight of vj for 

cluster C, set as the inverse of the number of SVs from individual I(vj) found in 
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the cluster C. The weighted average limits bias in the clique formation toward 
individuals with multiple SV calls at similar positions (detected with different 
approaches, for example, breakpoint refined and unrefined SV calls). Likewise, 
the degree of a vertex vi was also calculated as the number of individuals I(vj) that 
it has an edge with. We used D = 0.5 for non-TR SVs and D = 0.15 for TR SVs. We 
decided to be more conservative in the merging of TR SVs than that for non-TR 
SVs to be able to distinguish alleles with different numbers of repeats within the TR 
regions and because we artificially increased their overlap by changing their begin 
sites (‘SV merging pre-processing’ in the Supplementary Information).
	3.	 Finding SV clique representatives: we represented a clique using an SV with 

the most common (begin site, length) attribute set among all the clique SVs. 
If there was no such single most common attribute set, we sorted the SVs 
with the most common attribute sets using the frequency of their begin and 
end site and length among all the clique SVs, separately, in the given order. In 
this step, we used the original begin and end sites for TR SVs. For all TR SV 
clique representatives within the same TR region, we assigned their position 
as the most common original begin or end site among all SVs of all cliques 
within the TR region. All further ties were first broken by prioritizing begin 
sites over end sites and then using the alternate allele ratios. If ties could not 
be broken, the median begin site was used.

SV clique representatives were finally presented as merged SVs. We note that 
variants discovered with length between 30 bp and 50 bp were not filtered out 
during the SV-merging step to prevent clique formation with incomplete data.

SRS genotyping with GraphTyper. We provided the merged SV set to 
GraphTyper7,23 version 2.6, which generates an augmented graph genome 
using SV predictions, together with previously discovered SNPs and indels7, 
for population-scale genotyping. The variants were genotyped on the set of 
10,000 individuals with SRS data, using three genotyping models for deletions 
and insertions. For insertions, we use the models first breakpoint (B1), second 
breakpoint (B2) and their aggregate (AG). For deletions, we use the models 
breakpoint (B), coverage (C) and their aggregate (AG). As GraphTyper does not 
support multiallelic SV genotyping, we added multiallelic SVs as separate  
biallelic variants.

LRS genotyping (LRcaller). LRcaller is a proof-of-concept genotyping algorithm 
that genotypes SVs directly from ONT sequencing reads. We introduced LRcaller 
version 0.1 in our previous study66, in which we genotyped 1,817 individuals with 
LRS data. In this study, we introduce LRcaller version 0.2 (https://github.com/
DecodeGenetics/LRcaller), which now allows for the genotyping of multiallelic 
variants, better treatment of TRs and additional genotyping models compared  
to version 0.1.

Each breakpoint was genotyped independently, resulting in two sets of 
genotypings for the canonical deletion and insertion variants identified in this 
study, corresponding to the left and right breakpoints (Extended Data Fig. 2). Note 
that the algorithm processes each variant independently; that is, each variant is 
genotyped without considering other variants in the region, which may lead to 
suboptimal behavior when there are multiple neighboring variants.

To capture multiple types of information that could represent an SV, we 
used five genotyping models: direct alignment (AD), variant alignment (VA), 
reference-aware variant alignment (VAr), presence (PR) and joint (J). We used 
the reads overlapping a breakpoint and two sets of evidence for genotyping: (AD) 
from an alignment of a subread to the reference and alternate alleles and (VA, VAr, 
PR) from the alignment present in the BAM file as aligned by minimap2. The joint 
model (J) uses both sets of evidence. See ‘LRS genotyping (LRcaller) models’ in the 
Supplementary Information for further explanation of the models.

Genotyping with LRcaller. Variants were genotyped independently for the left and 
right breakpoint using the five different models presented above for each variant, 
producing a total of ten genotypes per individual–marker pair.

Phasing and imputation of structural variants. For each marker, we produced 
a total of 13 different genotypes, three from GraphTyper (Illumina) and ten 
from LRcaller (ONT). We phased and imputed all genotyped variants into the 
haplotypes of 166,281 Icelanders, using a previously described methodology18,24,25. 
We considered variants with an imputation information score greater than 0.9 and 
a leave-one-out R2 greater than 0.5 as ‘imputed’. After imputing our SVs, we also 
acquired the allele frequencies of the variant alleles and the reference allele spanning 
a multiallelic SV. We used the reference alleles to deduce haplotypes carrying a 
variant allele of unresolved size or type. Carriers of a variant allele of unresolved type 
were determined as those not containing the reference allele of a secondary-form 
(‘Creating a Variant Call Format (VCF) file for the merged SV set’ in  Supplementary 
Information) multiallelic SV comprising both insertion and deletion variant alleles. 
We refer to variant alleles with an unresolved size or type as ‘non-reference alleles’.

SV filtering. After genotyping and imputing our merged SV set using both LRS 
and SRS sequencing, we filtered the data using imputation accuracy and other 
filters in five stages as described in ‘SV filtering stages’ in the Supplementary 

Information. We report the set of variant alleles from our final filtering step as 
‘high-confidence’ variants.

Comparison of the merged SV set to other SV datasets. To calculate FP and 
FN rates of our high-confidence SV alleles, we developed a statistic, variants 
inconsistent with HG002 (VIH), and compared our dataset to the SV sets provided 
by Audano et al.16, gnomAD-SV11 and Zook et al.5 on HG002 (https://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_
v0.6/HG002_SVs_Tier1_v0.6.vcf.gz).

We expect most high-frequency variants to be present in populations of similar 
heritage, such as European populations. Variants found in population A but not 
found in population B can be due to (1) fixation of the variant in population B, (2) 
different representation of the variants between the two datasets, (3) FP calls in 
dataset A and (4) FN calls in dataset B.

As variant representation differs between variant callers, we used a relaxed 
method for determining whether a variant discovered in dataset A was also present 
in dataset B, counting the variant as present if there was a variant in dataset B 
occurring within 500 bp of the start position of the variant discovered in dataset A 
(given GOR files for datasets A and B, the command run was gorpipe ‘A.gor | join 
--snpseg --f 500 B.gor’).

Variants inconsistent with HG002 statistic. As HG002 has been extensively 
characterized within tier 1 regions, we can use it to estimate FP rates within these 
regions. We developed the statistic VIH. VIH takes as input two studies, A and B, 
along with their variants and the variant frequencies from study A. VIH assumes 
that (1) the same classes of variants have been characterized within HG002 as in 
study A and (2) no drift in variant frequency has occurred between study A and 
HG002. We compute

VIH (A, B) =
|A − B|

|A| ×

(

1 −

c
E

)

where |.| represents cardinality, |A − B| the number of variants in study A missed 
by study B. c is the number of variants in |A − B| found in HG002, and E is 
the expected number of variants in |A − B| found in HG002, given the variant 
frequencies in study A. cE is therefore an estimated true positive rate of the variants 
in |A − B|, and 

(

1 −
c
E
)

 is an estimate of the FP rate. We use this statistic as a 
surrogate for the FP rate for study A, although it may in part be explained by 
population drift, differences in variant classification between studies and FNs in 
the HG002 truth set.

Association testing. We tested our SVs for association with LDL levels based on 
the linear mixed model implemented in BOLT-LMM70. We used BOLT-LMM 
to calculate leave-one-chromosome-out residuals, which we then tested for 
association using simple linear regression. A generalized form of linear regression 
was used to test for association of phenotypes with SVs. We assume that the 
phenotypes follow a normal distribution with a mean that depends linearly on 
the expected allele at the variant and a variance–covariance matrix proportional 
to the kinship matrix71. We used LD score regression to account for distribution 
inflation in the dataset due to cryptic relatedness and population stratification72. 
The inflation factors were computed from a set of SNP and indel sequence variants. 
Using a set of about 1.1 million SNP and indel sequence variants, we regressed the 
χ2 statistics from a genome-wide association scan against LD score and used the 
intercept as a correction factor. Effect sizes based on leave-one-chromosome-out 
residuals were shrunk, and we rescaled them based on the shrinkage of the 1.1 
million variants used in LD score regression.

Comparison to the GWAS catalog. We downloaded version 1.0 of the GWAS 
catalog with all associations (https://www.ebi.ac.uk/gwas/docs/file-downloads) 
on 23 July 2020 (gwas_catalog_v1.0-associations_e100_r2020-07-14.tsv). 
SNPs and indels in the GWAS catalog were matched with in-house SNPs using 
exact-coordinate matching, and two markers were assumed to be the same if they 
had the exact same coordinate in GRCh38.

An in-house tool was used to compute correlations between SNPs and indels 
imputed into 166,281 Icelanders and SVs imputed into the same set. Correlations 
were limited to windows of 500 kb, such that a correlation between a SNP or indel 
and an SV was observed if and only if they were within 500 kb of each other. We 
provide our results in Supplementary Data 4.

Association testing for the number of motifs in ACAN. Using SV alleles that we 
identified in a VNTR in ACAN (Table 1), we calculated expected motif change per 
haplotype in an individual as

c (h) =
∑

v∈V
n (v) × P(v, h)

where v∈V represents the SV alleles, and n(v) represents the number of motif 
change in SV allele v, which we calculated by rounding the allele lengths divided by 
the motif length to an integer (negative for deletions). P(v, h) is haplotype carrier 
probability for haplotype h carrying the SV allele v, calculated during imputation 
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(Phasing and imputation of structural variants). We performed a unit-based 
normalization of the c(h) values to use as haplotype carrier probabilities in 
association testing.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Access to these data is controlled; the sequence data cannot be made publicly 
available because Icelandic law and the regulations of the Icelandic Data Protection 
Authority prohibit the release of individual-level and personally identifying data. 
Data access can be granted only at the facilities of deCODE genetics in Iceland, 
subject to Icelandic law regarding data usage. Anyone wishing to gain access to the 
data should contact K.S. (kstefans@decode.is). Icelandic law allows for unimpeded 
sharing of summary-level data. Data access consists of Supplementary Data 1–5 
as described below, alongside the VCF and index files for the high-confidence SV 
alleles at https://github.com/DecodeGenetics/LRS_SV_sets.

Code availability
Codes are available as follows: SViper, modified, used in this study (https://github.
com/DecodeGenetics/SViper/tree/cornercases); SViper, original repository 
(https://github.com/smehringer/SViper); Scrappie, modified, used in this study 
(https://github.com/DecodeGenetics/scrappie/tree/v1.3.0.events); Scrappie, 
original repository (https://github.com/nanoporetech/scrappie); SquiggleSVFilter 
(https://github.com/DecodeGenetics/nanopolish/tree/squigglesv); sample 
execution of SquiggleSVFilter with input and expected output data (https://
github.com/DecodeGenetics/SquiggleSV_samplerun); sv-merger, to form SV 
cliques using the Cluster Affinity Search Technique algorithm (https://github.
com/DecodeGenetics/sv-merger); LRcaller (https://github.com/DecodeGenetics/
LRcaller).
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Letters NaTuRE GEnETIcS

Extended Data Fig. 1 | Oxford Nanopore Technologies (ONT) long-read sequencing statistics. a, N50 length per flowcell (N = 4,757 flowcells) prior to 
GRCh38 alignment. b,c,d, Aligned coverage, alignment percentage, and error rates stratified by type, per individual (N = 3,622 individuals). Statistics are 
computed over sequenced reads longer than 3000 bp. In panel d, box limits indicate upper and lower quartiles, centre line indicates median, and whiskers 
indicate ±1.5 times the interquartile range.
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LettersNaTuRE GEnETIcS

Extended Data Fig. 2 | SquiggleSVFilter overview. Given a candidate structural variant (SV), and an SV supporting read, SquiggleSVFilter first identifies 
the subread of the ONT basecalled read overlapping the SV, using the reference alignment BAM file. Next it finds the squiggle slice of the identified 
subsequence using the event table. For both the left and right flanks around the variant, it determines the reference and alternative sequences given the 
candidate variant, and computes their raw data-vs-sequence log likelihood scores with the squiggle slice. A sufficiently high log likelihood score difference 
for the alternate allele marks the read as an SV supporting read.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Letters NaTuRE GEnETIcS

Extended Data Fig. 3 | Allele frequency distribution of SVs at low frequency. SVs are binned at 0.01% for alleles with 0.1% to 5% frequency.
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Extended Data Fig. 4 | Length and modulo distributions of structural variants (SVs) that are contained within exons. a, Length distribution of SVs 
with lengths between 50 and 100. Stars denote lengths divisible by 3. (N = 224 markers). b, Modulo distribution of SV lengths across length intervals. 
(N = 549).
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